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Abstract—Fluid dynamics of a radially spreading liquid film originated by an ideal jet that falls onto a
horizontal plate are studied approximately. Five regions of different hydrodynamic structures can be
singled out here. The first one is that of the normal impingement of the jet against the plate, in which the
flow essentially changes its direction. The second and the third regions correspond to laminar film flow
before and after the emergence of the viscous boundary layer on the free surface of the film, respectively.
The fourth region represents a zone in which a hydraulic jump takes place, where the film thickness
drastically increases, and the fifth one is a region of calm gravitational spreading of the film up to the
{iquid running off the plate. Flow patterns within all the regions except that of hydraulic jump are considered
on a basis of the Karman—Pohlhausen and Blasius methods and are conjugated in between. It is shown
for the first time that the hydraulic jump on a sufficiently extended film owes its origin to the fact that the
region with the viscous film flow induced by the initial jet momentum must come into contact with the
region of the film which spreads under gravity. The results are obtained in a simple explicit form. They
may lay a foundation for heat and mass transfer studies. A transfer problem is considered within the scope
of the Karman-Pohlhausen method at an arbitrary Peclet number and asymptotically at high Peclet

numbers with the help of the thin diffusional layer approximation.

1. INTRODUCTION

FiLm FLOWS over solid surfaces, including those gen-
erated by impinging laminar and turbulent jets, are
important for the problem of cooling hot bodies as
well as for physico—chemical processing of metals and
other solid materials. When dealing with such appli-
cations, one faces difficult situations of convective
heat and mass transfer in a liquid film and needs a
reliable basis for treating them to full advantage. This,
in turn, requires a detailed knowledge about the vel-
ocity field within various film regions.

The theory of film flows of this type has long
attracted significant attention. Its state has not
changed considerably, however, for the last two or
three decades and now it is substantiaily the same
as presented in refs, [1-3]. Self-similar velocity fields
specific to different flow regions have been found and,
using the requirement of momentum conservation, an
equation has been obtained which relates the film
thickness after the hydraulic jump to that before it
and also to physical and regime parameters. Not-
withstanding this, the velocity fields are expressed in a
form which is not tractable enough to be conveniently
employed when studying heat or mass transfer prob-
lems. Besides, the very physical reason for the occur-
rence of the hydraulic jump remains obscure. This
prevents the determination of other characteristics of
the jump as well as of the conditions under which it
actually makes its appearance.

The indicated features of the present-day theory
hamper an effective study of manifold transfer pro-

attempts undertaken to this end (examples are to be
found in refs. [4-6]). There are also some persistent
discrepancies between theoretical predictions and
experimental data, an example of which is supplied
by the behaviour of the local film Nusselt number in
the immediate vicinity of an impinging jet. In what
follows, simple analytical expressions of the flow vel-
ocity in diverse parts of an axisymmetric film are
obtained by using the approximate fluid dynamics
methods. A similar approach has been previously
applied in ref. {7} to film flow produced by an inclined
plane laminar jet falling onto a horizontal piate. The
hydraulic jump is proved to occur whenever the film
spreads far enough. Its appearance happens to be a
necessary condition for the transition from viscous
thin film flow before the jump to the gravity-induced
thick film flow regime in the region adjacent to the
edge of the plate. Only laminar flow conditions are
considered, but the main findings can be easily
extended to flows generated by turbulent jets. The
immediate effects of the specific features of film flow
on the mass or heat transport intensity are demon-
strated by means of both treating convective transfer
at high Peclet numbers in the thin diffusional bound-
ary layer approximation and using the approximate
Karman-Pohlhausen method.

2. PHYSICAL MODEL AND BASIC EQUATIONS

Let us consider a radial film flow produced by a
laminar vertical ideal liquid jet hitting a horizontal

cesses to a considerable extent. Itis evidenced bymany  disk at its centre as sketched in Fig. 1. Within the
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NOMENCLATURE
( jet radius o dimensional thickness of boundary layer
¢ concentration of admixture N dimensionless vertical coordinate defined
D diffusivity ol admixture in equation (21) !
r function defined in cquation (21) i dimensionless vertical coordinate i
Fr Froude number ’ heat conductivity ‘
FR  guantity defined in cquation (9) v kKinematic viscosity of liquid
4 gravity acceleration < dimensionless radial coordinate
1 dimensionless film thickness o density
I dimensional film thickness b thermal diffusivity
Nu Nussclt number W stream fanction.
Pr Prandtl number
P pressure . .
U . . Subscripts
q mass or heat flux density I
Iy oo 0 initial values ;
R disk radius | int wl hvdrod ol
wint where rodynamic layer comes |
Re  Reynolds number F f A ydrodyne yereome |
. . ) . o free surface
r dimensional radial coordinate T it wl ) th T ';
. \ . point where thermal Jayer comes o free
S¢ Schmidt number ' a o
g . surlace
Sh Sherwood number N :
. ) v radial component :
1 temperature tical . |
; . . . . 7 vertical componen i
{ dimensionless variable introduced in N pon !
. I + after hydraulic jump .
cquation (22) ~ S
. o . before hydraulic jump
U veloeity at free surfuace . . . S
) . ] point of hydraufic jump v
i velocity R lisk cd . i
- . . . disk edge ;
X variable introduced in cquation (30) R N i
) . - . w wall. .
- dimensional vertical coordinate. ¢ !
Greek symbols Superscript
A dimensionless thickness of boundary connected with the thermal boundary \
Jayer layer.

central part of the disk with a linear dimension of the
order of initial jet radius a. there occurs an irrotational
flow that transforms the jet into an axisymmetric
divergent film spreading over the disk surface (region
13. Through the action of viscous stresses. a boundary
layer appears ncar the solid wall and continues to
develop further until its external boundary reaches
the free surface of the film (region I1). After that. in
region 111, an cntirely viscous flow develops through-
out the whole film. The flow of such a type cecascs
before a sudden sharp increase in the film thickness.
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Fic. 1. A sketch of film fow (explanations are given in the
text).

which is commonly referred to as a hydraulic jump
zone. The width of this zone (region IV in Fig. 1
is rather small as compared with those of the other
regions and may usually be ignored. Following the
jump zone, there is another region V in which the film
thickness gradually decreases until the liquid drains
down the disk edge. Such a picture can be conceived
as a result of the whole bulk of both pertinent exper-
iments and theoretical concepts [1- 3. 7].

Leaving the analysis of the flow inside region i
aside for the moment, we shall turn to regions 1. Hi
and V within which the film may be safely considered
in the common thin fluid layer approximation.
Boundary layer cquations can be written as

e, Vop
£, =¥ - e
ér poor
I &p Clrr))y alree)
B T e T b
p s ‘r ‘z

where p and v are the density and kinemalic viscosity
of the liquid. ¢ is the gravity acccleration. There arc
imposed common no-slip conditions at the disk sur-
face (z = 0), and a zero tangential stress condition
cither at the outer border = = 8(r) ol the boundary
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layer or on the free film surface z = A(r). The pressure
must be assumed constant above the film, so that
the expression p = const+ pg(h—z) follows from the
second equation in set (1).

A self-similar solution of equations (1) was
obtained in refs. [1, 2] neglecting the pressure gradient
due to gravity. Velocity profiles were then expressed
in terms of rather complicated functions of the dimen-
sionless vertical coordinate y = z/8{r) or n = z/h(r).
An alternative approach based on the use of Schwetz’s
approximate method was suggested in ref. [3]. It yiclds
rather simple results for velocity fields in various film
regions. Because of their complexity, the former pro-
files are inconvenient for studying transfer processes,
whereas the latter are oversimplified and insufficiently
accurate to be applied with confidence to those pro-
cesses, For this reason here we prefer to use the well-
known Karman—Pohlhausen polynomial method,
according to which the radial longitudinal component
of the liquid velocity is approximated as follows:

0r2) = 1U() (ra* ’%)

z z

= o "7 2
Here U(r) is either a varying velocity at the free sur-
face or a constant velocity U, of the impinging jet and
of the ideal film flow beyond the boundary layer.
The profile in equations (2) satisfies identically the
boundary conditions at z=0 and z=Ah(r) or
z=0(r}.

Integrate the first equation in set {1) throughout
either the boundary layer in region II or the whole
viscous film in regions III and V with the help of the
other equations in set (1} and (2). In the first case we
get

39 3vU, dh
EBUO; 5(5) 55 tody €)

and in the second case
272 ¢*U3 d {1
875 r drirh

The condition of the total flow rate conservation leads

to the following relationship between (r) and A(r)
h(r) = a*2r+368(r)/8, (5

évaZUO hé’?
52 I

@

which is relevant to the situation in region II. Within

regions II and V we get from the same condition
U(r) = 4a*U,/5rh(r), (6)

which was already used to formulate equation (4).
It is convenient to introduce dimensionless vari-
ables and Reynolds and Froude numbers

Re'’?
{an, Hp= “a {Rem’é }2}

ga

FI"=Ug.

(M

Then equation (3) yields a relation for determining
A(&) in the form

39 d

dA
280 dZ (éA)2“352+FR( 52——1>A2 it

4° d¢

and equation (4) gives

272 4 , LdH
575 g I = S+ FREH)
Fr
FR = PR 9)

Equations (8) and (9) form the main basis for sub-
sequent calculations.

3. SOLUTION OF GOVERNING EQUATIONS

For the great majority of problems of practical
interest, the last terms on the right-hand sides of equa-
tions (8) and (9) contain the small factor FR and may
often be dropped out. In such a case, equations (5)
and (8) result in

H(S) ~

8
A(¢)=(~%~9zs) L e<én

The boundary layer comes to the free surface at
£ = &,, where &, must be evaluated from the equality
A(¢,) = H(£,). This, in view of equations (5} and (7),
gives H, = H({,) = 4/5¢, and, further, with account
of equation (10},

= (78/875)'° ~ 0.447, H, ~1.79.

T A(45)

(10

(1n

Similarly, the solution of equation (9) without the
term proportional to FR, which satisfies the condition
H(¢) = Hy with £ > &) gives

C

H(f)”"ﬁgs a3
C= 1755 —H —(.685 12
36 1€ ~ —0.685. (12)

The dimensionless thicknesses of both the bound-
ary layer and the film are illustrated in Fig. 2. It can
be concluded, first, that formulae (10) and (12) give
a reasonably good approximation to exact solutions
of equations (5), (8) and (9) when ¢ < 2 and, second,
that the use of approximate velocity profile (2) does
not introduce a considerable error as against the self-
similar solution of the hydrodynamic problem
obtained in ref. [2]. The error can be proved not to
exceed five percent within the whole indicated region.

When the last term on the right-hand side of equa-
tion (9) is taken into account, the derivative dH/d¢&
can be seen to tend to infinity as £ approaches £, 0,



16% Yu. A.

FiG. 2. Dimensionless film profiles: I, formulae (10) and
(12): 2. exact solution with account of gravity: 3. outer
surlace of the boundary layer; dashed line, result of ref. [2].

&, being the only root of the equation &, H*(Z,)
= (272/875)FR. This means that a sharp increase
in the film thickness is inevitable if the film flows
fur enough. Of course, solution (12) does not hold
truc and the original thin fluid layer cquations (1)
cease to be valid near the pont &= ¢,. Never-
theless. the above conclusion is indicative of the onset
of a certain hydrodynamic crisis bound to occur at a
sufficiently remote distance from the jet.

The crisis is evidently due to the development of the
hydrostatic pressurc at the solid plate along the
spreading film of growing thickness. It is caused
entircly by an increase in the weight of the film per
unit arca. The derivative ¢r,/Cz near the plate turns
to zero at &= Z,. This is similar to the condition
which determines the detachment of a laminar bound-
ary fayer from an underlying solid surface. By
analogy. it can be concluded that a reciprocal flow

dirccted towards the jet should arise in the vicinity of

the plate al this point. This flow must favour the
formation of a vortex which ultimately results in
carrying the liquid off the plate with an observable
increase in the film thickness. Such an explanation is
consistent with the hypothesis first formulated by Tani
and Kurihara. according to which the hydraulic jump
is an immediate consequence of an adversc pressurc
gradient due to gravity (see ref. [2]). Thus, however
small the body gravity forces, they seem to be capable
in the long run to significantly influence the film flow.

This inference is rather of a general character, since
experiments witness the hydraulic jump to begin well
before the point & = £, is reached. so that it is the
region & « &, which is actually pertinent to real films.
Then. as it can be deduced from Fig. 2. one is free to
neglect an effect of gravity on film flow everywhere in
front of the jump. If the jump originates at £ = ¢ .
then the dimensionless film thickness H = H(&.)
before the jump has to be approximately calculated
from cquation (12). The vortex jump region ends at
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E=C¢ where H, = HE ) > H
and M, are still unknown.

Next to the jump. a viscous film flow is established
again. The situation with & > | is governed by cqua-
tion (9), just like that ahead of the jump. that is. when
¢ < < . However, the action of gravity cannot be now
overlooked, since it is just that very reason which
produces the flow. If the hquid smoothly flows down
the edge of the disk, then the following requirement
must be fulfilled :

. The quantitics /1

dH o R
o — At - == Re ( \ (13
dg \ !
R being the disk radius. It can be seen from equation
(9) that this requirement 1s actually satisfied at

875

Hy = H(ip) = <—7 FRkR)

< 0.68 ( R")’ : /”\) o
S 0.68{ (R (14

The dimensionless film thickness H 18 @ mono-
tonously decreasing function of & within the whoie
region considered. Numerical solutions of cquation
(9) at diverse values of ¢, and FR arc presented in
Fig. 3. It 1s worth noting that similar solutions for a
plane film are expressible in an analytical form (sce
ref. [7]).

Thus, the hydraulic jump region <. < < &,
appears to be necessary Lo adjust the original film flow
generated by an impinging jet to the regime of calm
gravitational spreading of a comparatively thick
liquid layer conditioned by the drain requircment.
equation (13) or (14).

4. JUMP CONDITIONS

The length of the jump zone is commonly small as
compared with those of the other flow regions, so that
it is permissible to take approximately that & =x

‘\ 2
Xﬁ

[H] 10

£

FiG. 3. Film profiles after hydraulic jump at different values
of &, and log (FriRe"®) = 2, 3. —4 and — % (curves |
4, respectivelyy.
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~ {;and to neglect the viscous friction inside the zone.
The latter assumption allows for the momentum
conservation equation to be used in a standard
integral form [8]

h.. h,
;ﬂhi—hi):j vfdz»—J vidz, (15)
o o

where £_ and h., refer to the film thickness before and
immediately after the hydraulic jump, respectively.
With the help of dimensionless guantities identified in
equation (7), equation (15) yields

72 (1 1
1 2 g2y o _
VFR(H: —H?) 8755?(11 H+). (16)

This relation serves to find ¢, H_ and H, which is
defined as H(¢)) in conformity with equation (10) or
(12) and with the solution of equation (9) in region
V', respectively. This equation can be shown to have
either a single physically suitable solution or none at
all.

Representative film profiles at £, = 4 and different
values of FR are plotted in Fig. 4. Dependencies of
H,and H_,aswellasof {,onzaregivenat FR =0
n Fig. 5. Finally, Fig. 6 illustrates the dependence of
these dimensionless quantities on FRat £, = 4.

Equation (16) has no solution when ¢, either
exceeds some maximal value, ., or is smaller than
a certain minimal one, &, both of them depending
on FR. That is why the curves of Fig. 5 terminate at
some points corresponding to these extremal values.
The case &, < £,y fits small disks, when the film flows
down the disk without forming a hydraulic jump
and the flow is of dynamic thin-film nature every-
where. To the contrary, when &, > £, (large disks)
the flow behaves according to the regime of calm
gravitational spreading within the whole flow region,
and the initial thickness of the film is higher, the larger
the disk radius.

To make the properties of the hydraulic jump
clearer, it seems plausible to consider, along with the
curves in Figs. 4-6, a change which occurs in these
properties with increase in the disk size under other-

3
8
H 2
1
4 poe
I l 1
o 1 2 3

FIG. 4. Film profiles at £, = 4 and Fr/Re'* = 0.05, 0.01 and
0.001 (curves 1-3, respectively).
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F16. 5. Dimensionless jump coordinate and film thicknesses

before and after the jump as functions of &, at Fr/Re'? = 0;

the curves terminate at the points at which solution of equa-
tion (16) ceases to exist.

wise identical conditions. When the disk radius rises
to a certain critical value, a weak hydraulic jump
appears for the first time just nearby the disk edge. As
the radius continues to grow, the jump gradually shifts
towards the disk centre and its intensity enlarges pro-
gressively (which means that #, grows monotonously
and simultaneously H_ monotonously decreases). At
last, when another critical value of the disk radius is
reached, the jump merges with the incident liquid jet
and eventually vanishes. In the last case, the film pro-
file is to be described by the curves of the type pre-
sented in Fig. 3.

From a physical point of view, such a behaviour of
the hydraulic jump is caused by the growth of the
overall hydraulic resistance to the film flow in the
whole region up to the edge of the disk. A similar
behaviour must surely be observed when the said
growth results not from an increase in the disk size,

-5 -4 -3 -2
log FR

FiG, 6. The same quantities as in Fig. 5 as functions of
Fr/Re'P at £, =4.
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but from some alternative rcason. Thus, the hydraulic
resistance of a disk of a given radius can be increased
by means of using a sharp rim or putting a special
concentric ring upon the disk edge, as it was the case
i some experiments reported in ref. [3]. It tollows
from the above analysis that any of the above-indi-
cated reasons must lead simultancously to a dis-
placement of the hydraulic jump closer to the jet, 10
a decrease in the thickness in the film that enters the
Jjump region and to an increase of the thickness of the
gravitationally expanding film that ecmerges {rom this
region. All thesc expectations are completely con-
firmed by the experimental evidence of ref. [3].

Principally, the same behaviour of the hydraulic
jump must be observed under unsteady conditions
when a vessel is being filled up with liquid supplied by
a jet which falls on the vessel bottom. We can casily
convince ourselves of the correctness of this inference
by placing a saucer under a water stream from a tap.

As regards the quantitative comparison of the
developed theory with experiments. the situation is
scriously hampered by the fact that the information,
which is usually reported in the experimental works
the present authors are awarc of. is far from being
sufficiently complete. Nevertheless. the results of such
a correlation with the data of refs. {2. 3] arc presented
in Fig. 7, where the vartable

I ,
w= LFREH & o
is employed which was previously suggested in ref,
2}

The agreement appears to be satisfactory. A slight
discrepancy, which might be perceived while perusing
Fig. 7. scems to be due, first. to the neglect of the finite
dimension of the jump zone and, second. to the direct
conjugation of the self-similar solutions relevant to
different flow regions at common boundaries of these
regions where the self-similarity should be lost.

-15
E 3
o
L
-20
-25 1 }
-04 -02 1]
log (§/ w'7)

F1G. 7. Theoretical dependence of w on ¢, " and exper-

imental data of refs. [2. 3].

5. INITIAL REGION

We proceed further to an analysis of the jet deflec-
tion region (I in Fig. 1) in which the above thin-film
theory does not hold. This region of radius r, ~ « is
of especial practical importance. since it provides for
maximal heat or mass exchange between the plate and
the radial liquid flow. To make a necessary correction,
we supposc for simplicity that the film self-similar flow
investigated above is established when r > 1. whereas
when » < 1, we deal with an axisymmetric boundary
flow. The latter low can be described with the help of
the well-known Blasius series discussed in detail
ref. [9]. By using a proper sofution of the problem
concerning a radial flow of ideal fluid generated by o
vertical jet (see rell [HO]). we are able to write in the
vicinity of the singular point of that flow

;= 0440 ria, .= 088U 7 a. {173
These formulac offer an opportunity to determine the
first term of the Blasius series for the radial velocity

component near the plate in the following form

v, 0383Re) G rsa ()

This cxpression is assumed o be valid when » < 5.
where r, can be approximately evaluated by imposing
the requirement that equation (18) should coincide
with equation (2) at small = and precisely at 5= r.
Then

ra=1{2.136)" fa ~ 1.288a. (1

Such an estimate is rather crude. However. it suffices
to allow for an adequate description of heat or mass
transfer efficiency near the critical point and. besides,
may be easily improved by retaining subsequent (erms
of the Blasius series.

6. MASS TRANSFER AT HIGH SCHMIDT
NUMBERS

To provide examples of application of the above
findings to heat and mass transler processes, we begin
with studying a convective diffusion problem in the
thin diffusional layer approximation. Suppose the film
contains an admixture of original concentration «,,
The admixture is adsorbed at the plate so that jts
concentration at - = 0 equals zero. Then the standard
formulation of the problem s [1 1}

¢c=0. z=10:

[ I (20
with D being the diffusivity of the admixiure.

The concentration differs from ¢, only within a very
thin layer adjacent to the solid plate where the radial
liquid velocity can approximately be presented as
(21

v, > u FE, = Re' Y(Zia).
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F(E) =
0.383 Re'?¢, 0K EC &~ 1288 Re™ 2
0.560¢77, &< i<~ 0447
L2H-3&)E", & < E< &~ Re™ A (Rla).

Here the function H(&) has a discontinuity at £ = ¢;
if £; happens to be smaller than ¢, (that is, if a
hydraulic jump occurs).

Let us introduce the stream function ¥ and a new
dimensionless radial coordinate ¢ by means of the
relations

uoa’

Y= “~2'~§F(<S)Cz,

t = Da* Re\/ (2u,) L EJEFR@)AE (22)

Then by performing a standard calculation [11], we
reduce problem (20) to that for a parabolic equation

-

oc

0 de
T @(\/wf) -@)

the pertinent solution of which is to be written in the
form

=117 J exp (—4)dx, x=J@NC. ()

The mass flux density is to be expressed as
g = D(8c/dz) at z = 0. This leads to a formula for the
local Sherwood number
q

Sh=22 _ 0.538(Sc Re) '
Dey

x [ j «f\/{éF(f))déT N

Se=v/D»1, &<,

with the Reynolds number being identified in equation
(7). This formula holds up to the hydraulic jump at
é = 5,

An expression for Sh after the jump can be derived
in the same manner as before if one assumes that
complete mixing is accomplished within the jump
region. Then, a new diffusional boundary layer begins
to develop when £ > £, and, consequently,

Sh = 0.538;—"(&&)“3
- {3

XUEJ@F(@M&]” JEFQ), ¢>¢, (25)

where ¢, is the mean admixture concentration in the
film after the jump which is fully determined by the
mass balance condition with account of the admixture
adsorption in the region before the jump.

In the vicinity of the critical point, one gets from
equations {21) and (24)

(@)

®)

1 {
0 H 2 3

£

FiG. 8. Dimensionless film thickness (a) and local Sherwood
number in the thin diffusional layer approximation (b) at
£x = 4, Re = 1000, Fr/Re'™ = 0.001.

Sh = 0.538(Sc Re) /*(1.149,/(Re)) 3
= 0.5645¢'® Re'>. (26)

Formulae (24)—(26) are illustrated in Fig. 8 for a
particular case of film flow at ¢} & ¢,. It can be seen
that the mixing inside the jump region and the result-
ing renewal of the diffusional layer give rise to the
maximum Sherwood number at £ = ¢;, after which
Sh again begins to decrease with £. Formula (26)
presents the upper limit of the local Sherwood number
which is attained nearby the falling jet. The constancy
of Sh at small £ is stipulated by the fact that the
liquid velocity at the outer edge of the hydrodynamic
boundary layer is by no means constant within the
initial region, but gradually increases from zero to u,
and may be approximated at small »/a with the help of
equation (17). This is quite compatible with numerous
observations (see, for example, ref. {6]). If the special
structure of the initial region were not taken into
account, the local Sherwood number would indefi-
nitely grow when r — 0, as it is shown by the dashed
line in Fig. 8.

7. HEAT TRANSFER AT AN ARBITRARY
PRANDTL NUMBER

The above calculation scheme is quite suitable for
studying mass transfer processes when the Schmidt
number exceeds unity to a considerable extent. How-
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ever. it becomes inapplicable to heat transter problems
when the Prandtl number is either larger or smaller
than unity. An approximate model can be brought
into action by using a method similar to that employed
for the thin liquid layer flow.

For the sake of definiteness, we consider either
cooling or heating of a solid plate maintained al a
constant temperature T,, by a liquid film of an original
temperature 7. It is convenient to write the relevant
convective heat conductivity problem in the form
which is somewhat alternative to that in equation (20)

1 ¢ ) c(e-T) T
e,y e T =y,
I or [ GIT
T=T,.:=0: T=T,:=5) (27
where y is the thermal diffusivity and é'(r) is the

thickness of the thermal boundary layer inside which
the temperature differs from 7,. This quantity is
unknown so far. Without loss of generality, T,, may
be taken equal to zero.

In compliance with the general idea of the Karman-
Pohlhausen method, we assume

T=T ”1 ; m =
B _2('7_3 T T sy

which in essence is similar to the approximation of
the velocity profile in cquation (2).

An equation for ¢'(r) is to be obtained by means
of integrating equation (27) over the layer thickness
with account of equations (28) and (2) and of the fact
that v, = u, when 6(r) < z < h(r). Two cases should
be distinguished when & <o (Pr<1) or & >0
(Pr > 1). In the first case we arrive at an equation

(28)

id A/" A 2(A LAY 4
dé ATs ) s\ T aee
(29)
A =(layRe ", Pr=vjy <1
It is alrecady known that A= CJ/({) and

= (280/39)' . Let A’ be equal to C'/(£), then we
get from cquations (29) an algebraic equation for the
ratio x = C7/C
(30)

vy X7
(I =x+ 357 = {3ty = 35 Py Pr<l

R r
which has the root x = 1 precisely at Pr = 1.

It is easy to see that x > 1, and the outer boundary
of the thermal layer comes to the free surface of the
film when &, < &, (that is, before this happens with
the hydrodynamic boundary layer). By taking into
account equation (5), we get an equation to determine

. 39 13 4 203
STTA280) \8/x—3) 7

=/
(31)
where x stands for the relevant root of equation (30).
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When o’
get

= 3 (Pr = 1), instead of equation (30) we

( X i3 e
A V14)‘ EV A

which gives x = 1 at Pr = 1. In this case, the hydro-
dynamic layer comes to the free surface before the
thermal layer and x < 1. The value of x determines
Ay =AE)) = vH, ~ 1.79x (see cquation (11) at

{321

&= 51

In the region of viscous flow, we are able to derive,
in quite the same manner as before. the following
equation and initial condition :

bafo A pso
Sdé ls o 14 H f A,M (33)
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Here, by introducing a new variable X = A"/H, we
obtain an equation for X with X({,) = x which c¢an be
integrated numerically. The dimensionless coordinate
&, of the point at which the thickness of the thermal
boundary layer becomes equal to the film thickness
has then to be found from the equality X (&,) = 1. The
dependence of <, on Pr s shown in Fig. 9. This
quantity goes to infinity as Pr tends to 5. If Pr > 5
the outer boundary of the thermal layer never comes
to the free surface, since the thickness of the film in
the region preceding the hydraulic jump grows faster
than that of the thermal layer.

The heat flux to the solid plate and the cor-
responding local Nusselt number are as follows :

07| 34T, Re'
4= 7 e “ o 2 a N
yua 3 Re!
N = oo = 34
“ELp T oy B

The quantity Nu/(Re Pr)" * as a function ol ¢ in the
region before the jump at different Pr's isillustrated in

0.8 T—

&~ 0.6
Ap
04 t—
1 1 i
0'20 15 3.0 4.5
Pr

F1G. 9. Dimensionless coordinate at which the thermal
boundary layer comes to the film free surface as a function
of Prandtl number.
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FiG. 10. Local Nusselt number before the jump at Pr =3,
dashed line gives a value pertinent to the initial flow region
as explained in the text.

Fig. 10. This quantity is restricted from above by the
value 0.564 Re''® which gives Nu/(Re Pr)'* within
the initial flow region (see equation (26)). It means
that a real dependence of Nu/(Re Pr)"* on £ at a
given Pr has to be approximately composed of a
segment of that line parallel to the &-axis when ¢ < &°
(Re, Pr) and a part of the corresponding curve of Fig.
10 when & > £°, £° being the coordinate of intersection
of these curves, as is conventionally shown by the
dashed line.

8. CONCLUDING REMARKS

The main issue of this paper consists in that it
provides a convenient tool to investigate manifold
transport processes of interest in thin liquid films
spreading over horizontal solid plates. The derived
representations of the velocity profile within diverse
regions of a film happen to be simple enough to ensure
their immediate use while studying convective transfer
problems. This offers an opportunity to get tractable
conclusions concerning the relevant distribution of
the local Nusselt or Sherwood number over the plate
without recourse to elaborated numerical methods,
as it is conclusively proved by the simple examples
considered above.

The same approach can readily be generalized to
give a sufficiently simple analytical description of film
flow of another origin. For instance, it is not difficult
to obtain results pertaining to a film generated by
an inclined plane or axisymmetric jet falling onto an
inclined surface when gravity contributes to either
acceleration or deceleration of the flow. A film orig-
inated by a plane inclined jet on a horizontal plate has
been treated in ref. [7]. It is also easy to sec that the
method is well applicable to films impinging upon a
moving surface, which are of great practical sig-

nificance when cooling rolled metals and in some other
engineering designs. Moreover, turbulent jets and
films could be treated in much the same way if one
cares to incorporate into the analysis an empirical
dependence of the effective viscosity due to turbu-
lence, as it was earlier done in refs. [1-3].

We conclude with a brief indication concerning the
specific features of the film cooling of a plate which is
overheated above the boiling temperature of a
coolant. Qutside the region, in which the coolant
first hits the plate and a vapour sublayer may occur,
one might expect the intensive evaporation from the
film free surface to cause a substantial loss of liquid
and so to affect the film hydrodynamics. In general,
such an expectation is correct when Pr < 5. The
smaller the Prandtl number, the earlier the boiling
temperature establishes itself at the free surface and
the greater is an influence of evaporation. That influ-
ence is capable, in particular, to prevent the formation
of a hydraulic jump. However, it is not so for liquids
with Pr > 5 when the thermal boundary layer has no
time to reach the free surface and the temperature at
the latter remains equal to an original temperature of
the liquid coolant. Then the evaporation does not
generally play any considerable role and film prop-
erties are practically the same as if there were no heat
transfer process at all. The significance of the last
notion is evident because the Prandt] number of the
most common coolant—water—is certainly larger
than the indicated critical vaiue of five.
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