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Wydrodynamic conditions of transfer processes 
through a radial jet spreading over a flat surface 
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Abstract-Fluid dynamics of a radially spreading liquid film originated by an ideal jet that falls onto a 
horizontal piate are studied approximately. Five regions of different hydrodynamic structures can be 
singled out here. The first one is that of the normal impingement of the jet against the plate, in which the 
flow essentially changes its direction. The second and the third regions correspond to laminar film flow 
before and after the emergence of the viscous boundary layer on the free surface of the film, respectively. 
The fourth region represents a zone in which a hydraulic jump takes place, where the film thickness 
drastically increases, and the fifth one is a region of calm gravitational spreading of the film up to the 
liquid running offthe plate. Flow patterns within all the regions except that of hydraulic jump are considered 
on a basis of the Karman-Pohlhausen and Blasius methods and are conjugated in between. It is shown 
for the first time that the hydraulic jump on a suffici~~ltiy extended film owes its origin to the fact that the 
region with the viscous film Row induced by the initial jet momentum must come into contact with the 
region of the film which spreads under gravity. The results are obtained in a simple explicit form. They 
may lay a foundation for heat and mass transfer studies. A transfer problem is considered within the scope 
of the Karman-Pohlhausen method at an arbitrary Peclet number and asymptotically at high Fe&t 

numbers with the help of the thin diffusional layer approximation. 

1. INTRODUCTION 

FILM FLOWS over solid surfaces, incIuding those gen- 
erated by impinging laminar and turbulent jets, are 
inlpor~nt for the problem of cooling hot bodies as 
well as for physico-chemical processing of metals and 

other solid materials. When dealing with such appli- 
cations, one faces difficult situations of convective 
heat and mass transfer in a liquid film and needs a 
reliable basis for treating them to fuI1 advantage. This, 

in turn, requires a detailed knowledge about the vel- 
ocity field within various film regions. 

The theory of film flows of this type has long 
attracted significant attention. Its state has not 

changed considerably, however, for the last two or 
three decades and now it is substantially the same 
as presented in refs. [l-3]. Self-similar velocity fields 

specific to different flow regions have been found and, 
using the requirement of momentu~l conservation, an 
equation has been obtained which relates the film 
thickness after the hydraulic jump to that before it 
and also to physical and regime parameters. Not- 
withstanding this, the velocity fields are expressed in a 

form which is not tractable enough to be conveniently 
employed when studying heat or mass transfer prob- 

lems. Besides, the very physical reason for the occur- 
rence of the hydraulic jump remains obscure. This 
prevents the determination of other characteristics of 
the jump as well as of the conditions under which it 
actually makes its appearance. 

The indicated features of the present-day theory 
hamper an effective study of manifold transfer pro. 
cesses to a considerable extent. It is evidenced by many 

attempts undertaken to this end (examples are to be 
found in refs. [4-61). There are also some persistent 
discrepancies between theoretical predictions and 
experimental data, an exampfe of which is supplied 
by the behaviour of the local film Nusselt number in 
the immediate vicinity of an impinging jet. In what 
follows, simple analytical expressions of the flow vel- 
ocity in diverse parts of an axisymmetric film are 
obtained by using the approximate fluid dynamics 
methods. A similar approach has been previously 
applied in ref. [7] to film flow produced by an inclined 
plane laminar jet falling onto a horizontal plate. The 
hydraulic jump is proved to occur whenever the film 
spreads far enough. Its appearance happens to be a 
necessary condition for the transition from viscous 
thin film flow before the jump to the gravity-induced 
thick film flow regime in the region adjacent to the 

edge of the plate. Only laminar flow conditions are 
considered, but the main findings can be easily 
extended to flows generated by turbulent jets. The 
immediate effects of the specific features of film flow 
on the mass or heat transport intensity are demon- 
strated by means of both treating convective transfer 
at high Peclet numbers in the thin diffusional bound- 
ary layer approximation and using the approximate 
Karman--Pohlhausen method. 

2, PHYSICAL MODEL AND BASIC EQUATIONS 

Let us consider a radial film flow produced by a 
laminar vertical ideal liquid jet hitting a horizontal 
disk at its centre as sketched in Fig. I. Within the 
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layer or on the free film surface z = h(r). The pressure 
must be assumed constant above the film, so that 
the expression p = const +pg(h - z) follows from the 
second equation in set (1). 

A self-similar solution of equations (1) was 
obtained in refs. [ 1,2] neglecting the pressure gradient 
due to gravity, Velocity profiles were then expressed 
in terms of rather complicated functions of the dimen- 
sionless vertical coordinate ye = z@(r) or q = z/h(r). 
An alternative approach based on the use of Schwetz’s 
approximate method was suggested in ref. f3]. It yields 
rather simple results for velocity fiefds in various film 
regions. Because of their complexity, the former pro- 
files are inconvenient for studying transfer processes, 
whereas the latter are oversimplified and insufficiently 
accurate to be applied with confidence to those pro- 
cesses. For this reason here we prefer to use the well- 
known Karman-Pohlhausen polynomial method, 
according to which the radial longitudinal component 
of the liquid velocity is approximated as follows : 

2;’ (r z) = 2 U(r) q- ff r ? 
i > 3 

(2) 

Here U(r) is either a varying velocity at the free sur- 
face or a constant velocity U, of the impinging jet and 
of the ideal film flow beyond the boundary layer. 
The profile in equations (2) satisfies identically the 
boundary conditions at z = 0 and z = h(r) or 
2 = s(r). 

Integrate the first equation in set (1) throughout 
either the boundary layer in region II or the whole 
viscous film in regions III and V with the help of the 
other equations in set (1) and (2). In the first case we 

get 

and in the second case 

272 a4iJ; d 1 ______- _ = _ 
875 0 

6 va”U, 

r dr rh 5-z- 
-gh$-. (4) 

The condition of the total flow rate conservation leads 
to the following relationship between 6(r) and h(r) 

h(r) = a2/2r+ 3&(r)/& (5) 

which is relevant to the situation in region II. Within 
regions III and V we get from the same condition 

U(r) = 4a2 U,/Srh(r), (6) 

which was already used to formulate equation (4). 
It is convenient to introduce dimensionless vari- 

ables and Reynolds and Froude numbers 

Re=L!!!! Fr=ga 
v ’ u2 0 

Then equation (3) yields a relation for determining 
A(<) in the form 

and equation (4) gives 

Equations (8) and (9) form the main basis for sub- 
sequent calculations. 

3. SOLUTION OF GOVERNING EQUATIONS 

For the great majority of problems of practical 
interest, the last terms on the right-hand sides of equa- 
tions (8) and (9) contain the small factor FR and may 
often be dropped out. In such a case, equations (5) 
and (8) result in 

t: -=c 5,. (10) 

The boundary layer comes to the free surface at 
5 = c,, where <, must be evaluated from the equality 
A(< ,) = H(C: ,). This, in view of equations (5) and (7), 
gives H, = H(< ,) = 4/55, and, further, with account 
of equation (IO), 

c, = (78/875)“‘3 x 0.447, H, z 1.79. (II) 

Similarly, the solution of equation (9) without the 
term proportional to FR, which satisfies the condition 
H(t,) = H, with 5 > i;, gives 

H(t) = EC’-; 
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C=&;-H,& 2 -0.685. (12) 

The dimensionless thicknesses of both the bound- 
ary layer and the film are illustrated in Fig. 2. It can 
be concluded, first, that formulae (10) and (12) give 
a reasonably good approximation to exact solutions 
of equations (5), (8) and (9) when 5 < 2 and, second, 
that the use of approximate velocity profile (2) does 
not introduce a considerable error as against the self- 
similar solution of the hydrodynamic problem 
obtained in ref. [2]. The error can be proved not to 
exceed five percent within the whole indicated region. 

When the last term on the right-hand side of equa- 
tion (9) is taken into account, the derivative dH/d< 
can be seen to tend to infinity as 5 approaches 5, --0, 
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7. Dimensionless film profiles : I, formulae (IO) and 

<, being the only root of the equation <‘, If ‘(3, ) 
= (272/875)FR. This means that a sharp increase 
in the film thickness is inevitable if the film Bows 
far enough. Of course, solution (11) does not hold 

true and the original thin fluid layer equations (1) 
cease to be valid near the point < = <, Nevcr- 

theless. the above conclusion is indicative of the onset 
of a certain hydrodynamic crisis bound to occur at a 
sufficiently rcmotc distance from the jet. 

The crisis is evidently due to the dcvclopment of the 
hydrostatic pressure at the solid plate along the 
spreading film of growing thickness. It is caused 
entirely by an increase in the weight of the film per 
unit area. The derivative ?r,, (7: near the plate turns 
tct zero at < = <, This is similar to the condition 

which determines the detachment ofa laminar bound- 
ary layer from an underlying solid surface. By 
analogy. it can be concluded that a reciprocal flow 
directed towards the jet should arise in the vicinity of 
the plate at this point. This flow must favour the 
formation of a vortex which ultimately results in 
carrying the liquid off the plate with an ohscrvablc 
increase in the fihn thickness. Such an explanation IS 
consistent hith the hypothesis iirst formulated by Tam 
and Kurihara. according to which the hydraulic jump 
is an immediate consequence of an adverse pressure 

gradient due to gravity (see ref. [2]). Thus, howevet 
small the body gravity forces, they seem to bc capable 
in the long run to significantly influence the film flow. 

Thir inference is rather of a general character, since 
experiments witness the hydraulic jump to begin well 
bcforc the point f = _i, is reached. so that it is the 
region 5 cc 5, which is actually pertinent to real films. 
Then. as it can be deduced from Fig. 2. one is free to 
neglect an effect of gravity on film flow everywhere in 
front of the jump. If the jump originates at ’ - 5-t. 
then the dimensionless fihn thickness H = H(;~ ) 

before the jump has to be approximately calculated 
from cqua;ion (13). The vortex jump region ends at 

i; = .’ L where H, = H(i; + ) > ff The quantities H 

and N i are still unknown. 
Next to the jump. a viscous tilm flow is established 

again. The situation with : > <. ic governed by cqu;t- 
tion (‘I), just like that ahead of the jump. that is. when 
;<, However, the action of gravity cannot bc no\\ 
ovcrlookcd, since it is just that \crk reason which 

produces the flow. If the liquid smoothly flow5 down 
the edge of the disk, then the following requircmcnt 
must he fulfilled : 

R being the disk radius. It can bc seen from cquatio~~ 

(9) that this requirement is actually satisfied at 

The dimensionless film thickncsh 
tonuusly decreasing function of ; within the \vhoie 
region considered. Numerical solutions of equation 
(9) at diverse values of <,, and FR arc presented in 
Fig. 3. It is worth noting that similar solutions for a 
plane film are expressible in an analytical form (SW 

ref. 171). 
Thus, the hydraulic jump region 4 x: ; c. ,;, 

appears to be necessary to adjust the original film tlo~ 
gcneratcd by an impinging jet to the regime of calm 

gravitational spreading of 21 comparatively thick 
liquid layer conditioned by the drain rcquircmcnl. 

equation ( I-7) or (14). 

4. JUMP CONDITIONS 

The length of the jump zone is commonly smali LIX 
compared with those of the other Row regions. so that 
it IS permissible to take approximately that : : 2 
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zs [, and to negiect the viscous friction inside the zone. 
The latter assumption allows for the momentum 
conservation equation to be used in a standard 
integral form [8] 

where la_ and h, refer to the film thickness before and 
immediately after the hydraulic jump, respectively. 
With the help of dimensionless quantities identified in 
equation (7), equation (15) yields 

;FR(H: -HZ) = $$&+-. (16) 

This relation serves to find tit H_ and H, which is 
defined as H(<,) in conformity with equation (10) or 
(12) and with the solution of equation (9) in region 
V, respectively. This equation can be shown to have 
either a single physically suitable solution or none at 
all. 

Representative film profiles at tR = 4 and different 
values of FR are plotted in Fig. 4. Dependencies of 
H, and Hi., as well as of ti, on rR are given at FR = 0 
in Fig. 5. Finally, Fig. 6 illustrates the dependence of 
these dimensionless quantities on FR at tR = 4. 

Equation (16) has no solution when CR either 
exceeds some maximal value, &,,,,, or is smaller than 
a certain minimal one, &,,i,, both of them depending 
on FR. That is why the curves of Fig. 5 terminate at 
some points corresponding to these extremal values. 
The case tR < t,i” fits small disks, when the film flows 
down the disk without forming a hydraulic jump 
and the flow is of dynamic thin-film nature every- 
where. To the contrary, when t, > <,,, (large disks) 
the ffow behaves according to the regime of calm 
gravitational spreading within the whole Aow region, 
and the initial thickness of the film is higher, the larger 
the disk radius. 

To make the properties of the hydraulic jump 
clearer, it seems plausible to consider, along with the 
curves in Figs. 4-6, a change which occurs in these 
properties with increase in the disk size under other- 

FIG. 5. Dimensionless jump coordinate and film thicknesses 
before and after the jump as functions of eR at Fr/Re'13 = 0; 
the curves terminate at the points at which solution of equa- 

tion (16) ceases to exist. 

wise identical conditions. When the disk radius rises 
to a certain critical value, a weak hydraulic jump 
appears for the first time just nearby the disk edge. As 
the radius continues to grow, the jump gradually shifts 
towards the disk centre and its intensity enlarges pro- 
gressively (which means that H, grows monotonously 
and simultaneously H_ monotonously decreases). At 
last, when another critical value of the disk radius is 
reached, the jump merges with the incident liquid jet 
and eventually vanishes. In the last case, the film pro- 
file is to be described by the curves of the type pre- 
sented in Fig. 3. 

From a physical point of view, such a behaviour of 
the hydraulic jump is caused by the growth of the 
overall hydraulic resistance to the film flow in the 
whole region up to the edge of the disk. A similar 
behaviour must surely be observed when the said 
growth results not from an increase in the disk size, 

L 
0 1 2 3 -2 -4 -3 --2 

I log FR 

FIG. 4. Film profiles at & = 4 and Fr/Re'13 = 0.05,O.OI and 
0.001 (curves 1-3, respectively). 

FIG. 6. The same quantities as in Fig. 5 as functions of 
Fr/Re ‘I3 at tR = 4. 



hut from some alternative reason. Thus. the hydraulic 

resistance of a disk of a given radius can be increased 

hy means of using a sharp rim or putting ;L special 

concentric ring upon the disk edge. as it wax the cast 

111 some cxpcrimcnts rcportcd in ref. [3]. It follows 

from the above analysis that any of the aho\c-indi- 

catcd reasons must Icad simultancouslq to ;I dis- 

placement of the hydraulic jump closer to the jet. to 

a &crease in the thickness in the film that enters the 

jump rqion and to an increase of the thickness of the 

[‘I-a\itation~lllv expanding film that emerges from this ? 
region. All these expectations arc complclcl? con- 

firmed by the cuperimcntal evidence of ref. [-?I. 

PrincipalI>. the same behaviour of the hydraulic 

jump must bc obscrvcd under unsteady conditions 

when a vessel is hcing filled up with liquid supplied by 

;I jet which falls on the vcsscl bottom. We can easily 

conCncc ours&es of the corrcctncss of this infcrcncc 

by placing a saucer under ;I water stt-cam from ;I tap. 

As rcpard~ the quantitative comparison of the 

dcceloped theory with experiments. the situation 15 

seriously hampcrcd by the fact that the information. 

which is usually reported in the cxperimcntal \+orks 

the present authors are aware of. is far from hcing 

sufficiently complete. Nevertheless. the results of such 

a correlation with the data ofrcfs. 17. 31 arc prcscntcd 

in Fig. 7. whcrc the L ;uiablc 

is cmploycd wshich was previously suggested in ref. 

PI. 
The agreement appears to bc satisl’nctory. A slight 

discrepancy. which might be perceived whllc perusing 

Fig. 7. seems to be due. first. to the neglect of the finite 

dimension of the jump zone and, second. to the direct 

conjugation of the self-similar solutions r&van1 to 

different flow regions at common boundaries of thcsc 

regions where the self-similarity should bc lost. 

ITIc;. 7. Theoretical dependence of IV on 5,‘~’ ’ and exper- 
imcntal data of refs. [2. 31. 

5. INITIAL REGION 

We proceed further to an analysis of the jet dellcc- 

tion region (I in Fig. 1) in which the above thin-film 

theory dots not hold. This region of radius I ,, - li i\ 
ofcspccial practical importance. stnce it provides t’c,:, 

maxImal heat or mass exchange bctwccn the plate an<1 

the radial liquid How. To make ;I nccchsary coI’rccLIo1I. 

wc suppose for simplicity that the film self-similar 110~ 

in\,cstigatcd aho~c is cstablishcd uhcn I. > r,). LZ hcre;~~ 

when /’ < I.,, WC deal with an axisqmmctric bound:rI-> 

How. The latter How can he described with the help I)I 

the well-known Blasiuz xct-its discussed ill ~!c(a~l 11; 

ref. [91. By using :I proper solution of the pl-ohlem 

concerning a radial flow of Idcal Ruid Scncratcd hi .I 

vertical .jct (see ref. [IOJ). Mc arc’ ahlc to write in the 

vicinity of the singular point of rhnt llo~ 

I’, = 0.44c:,,,.‘o. , = fJ.XXL ,,I (1. {I71 

These formulae oft‘cr an opportunit\ to dctcrnilric the 

first term of the Blasius series for the rradial \,elocit! 

componcnl near the plate in the li~lloalng form 

i, -= 0.383RY ‘i .,i’Y (I , IS) 

This cxprrssion ia assumed to bc valid wl~cn I’ r r,,. 

where riI can bc approximately cvaluatcd by ImpoGnp 

the rcquircmcnt thal equation ( IX) should coincide 

with equation (2) at small I and precisely at , -~ i’, 
Then 

I’,, = (2.136) ’ :cl 2 I .28Xtr. i 1’)) 

Such an csl.imatc is rather crude. However. it \uHiccs 

to allow for an adequate dcscriptlon of heat ot- mass 

transfer eficiency near the critical point and. bcsidcs. 

may he easily improved by retaining subsequent terms 

of the Blasius series. 

6. MASS TRANSFER AT HIGH SCHMIDT 

NUMBERS 

To provide examples of application of the ahovc 

findings to heat and mass trunsfcr proccsscs. \\c hcgin 

uith studying ;1 convectice ditI’uGon problem in ~hc 

thin diffusional layer approuinlation. Suppose the film 

contains an admixture of original concentration I ,, 
The admixture is adsorbed at the platt: so that it\ 

concentration at z = 0 equals KINI. Then the standard 

fat-mulation of the problem i5 1 I i 1 

(“C’,,. 1 * I. IX) 

with I> being the diffusivlty of the admixture. 

The concentration differs from L’,~ only within ;I WI-> 

thin layer adjacent to the solid plate where the radial 

liquid velocity can approximately bc prcsentcd ah 
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F(f) = 

0.383 Rdi25, 0 < g < to ‘2 1.288 Re-‘jl 

o.560~--“2, to < r < r, ET 0.447 

1.2H-2(<)[-‘, 5, < 5 6 l& w Re-“‘(R/a). 

Here the function H(t) has a discontinuity at < = ti 
if 5; happens to be smaller than rR (that is, if a 
hydraulic jump occurs). 

Let us introduce the stream function I/ and a new 
dimensionless radial coordinate t by means of the 
relations 

Then by performing a standard calculation [I I], we 
reduce problem (20) to that for a parabolic equation 

the pertinent solution of which is to be written in the 
form 

c \- 

C=iG 0 s 
exp(-ix3)dx, x =J($)a-I!“. (23) 

The mass flux density is to be expressed as 
q = Q&j&) at z = 0. This leads to a formula for the 
local Sherwood number 

UC? Sh = --.-- = 0.538(ScRe)‘:3 
DC* 

with the Reynolds number being identified in equation 
(7). This formula holds up to the hydraulic jump at 
5 = ej. 

An expression for Sh after the jump can be derived 
in the same manner as before if one assumes that 
complete mixing is accomplished within the jump 
region. Then, a new diffusional boundary layer begins 
to develop when 5 > ti and. consequently, 

Sh = 0.538P(ScRe)‘~3 
co 

X 

[I; 
~,irJW-TWS 1 

-. 113 
JGYYS)), 5 > tj, (25) 

where c;, is the mean admixture concentration in the 
film after the jump which is fully determined by the 
mass balance condition with account of the admixture 
adsorption in the region before the jump. 

In the vicinity of the critical point, one gets from 
equations (21) and (24) 

4 

FIG. 8. Dimensionless film thickness (a) and local Sherwood 
number in the thin diffusional layer approximation (b) at 

tR = 4, Re = 1000, Fr/Re’j3 = 0.001. 

Sh = 0,53~(~cRe)“~(~.l49~(Re))‘~~ 

= 0.564Sc’~‘ReL’“. (26) 

Formulae (24)-(26) are illustrated in Fig. 8 for a 
particular case of film flow at c6 2 cO. It can be seen 
that the mixing inside the jump region and the resuit- 
ing renewal of the diffusiona~ layer give rise to the 
maximum Sherwood number at < = r,, after which 
Sh again begins to decrease with 5. Formula (26) 
presents the upper limit of the local Sherwood number 
which is attained nearby the falling jet. The constancy 
of S/r at small 5 is stipulated by the fact that the 
liquid velocity at the outer edge of the hydrodynamic 
boundary layer is by no means constant within the 
initial region, but gradually increases from zero to uc 
and may be approximated at small r/a with the help of 
equation (I 7). This is quite compatible with numerous 
observations (see, for example, ref. [6]). If the special 
structure of the initial region were not taken into 
account, the local Sherwood number would indefi- 
nitely grow when Y -+ 0, as it is shown by the dashed 
line in Fig. 8. 

7. HEAT TRANSFER AT AN ARBITRARY 

PRANDTL NUMBER 

The above calculation scheme is quite suitable for 
studying mass transfer processes when the Schmidt 
number exceeds unity to a considerable extent. How- 
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ever. it becomes inapplicable to heat transfer problems 
when the Prandtl number is either larger or smaller 
than unity. An approximate model can be brought 
into action by using a method similar to that employed 
for the thin liquid layer flow. 

For the sake of definiteness. we consider either 
cooling or heating of a solid plate maintained at a 

constant temperature r, by a liquid film of an original 
temperature T,,. It is convenient to write the relevant 
convective heat conductivity problem in the form 
which is somewhat alternative to that in equation (10) 

where x is the thermal diffusivity and ii’(r) is the 
thickness of the thermal boundary layer inside which 
the temperature differs from T,,. This quantity is 
unknown so far. Without loss of generality. T,, may 
be taken equal to rer0. 

In compliance with the general idea ofthe Karmun- 
Pohlhausen method. we assume 

which in essence is similar to the approximation ot 
the velocity profile in equation (2). 

An equation for (i’(r) is to be obtained by means 
of integrating equation (27) over the layer thickness 
with account of equations (28) and (2) and of the fact 
that 13, = CI~, when 6(r) < z < /T(Y). Two casts should 
be distinguished when ii’ < ci (1% < I) OI- A’ .y pi 
(Pr > i ). In the first case we arrive at an equation 

A’ = (ii’,,tu) RL’ i 3 , Pr = \‘/X < 1 

It is already known that A = C’,‘(i) and 
c’ = (280139)’ ‘. Let A’ be equal to C’\:(t), then we 
get from equations (29) an algebraic equation for the 

ratio 9 = (“‘c’ 

which has the root x = I precisely at I+ = I. 
It is easy to see that .Y 3 1, and the outer boundary 

of the thermal layer comes to the free surface of the 

film when <, d j’, (that is, before this happens with 

the hydrodynamic boundary layer). By taking into 
account equation (5). we get an equation to determine 

where x stands for the relevant root of equation (30). 

When (j’ 2 6 (Pr 2 I), instead of equation (30) wc 
get 

uhich gives s = 1 at PI. = 1, In this cast. the hqdro- 
dynamic layer comes to the free surf&c bcf‘ore the 
thermal layer and .Y < I. Thl: va1uc of .Y determine\ 
A’, = A’(;,) = .\-H, 2 1.79.~ (see equation (1 i)) aI 

1 
< = <,. 

In the region of viscous How. wc :tre able to derive. 
in quite the same manner ar before. the foliowing 
equation and initial condition : 

5 ‘-5,: A’(,‘,) = I.79.\(Prt~ PI, :a 1 

Here, by introducing a ncu variable .Y =- A’,‘tf. WC 
obtain an equation for X with X( f , ) = I which can bc 
integrated numerically. The dimensionless coordinate 
<, of the point at which the thickness of the rhertnal 
boundary layer becomes equal to the film thickness 
has then to be found from the equality X(5, ) = 1. The 
dependence of <, on I+ is shown in Fig. 9. Thib 
quantity goes to infinity as I+ tends to 5. If Pt- :-- 5. 
the outer boundary of the thermal layel- nccer comes 
to the li-cc surface, since the thickness of the tilm ill 
the region preceding the hydraulic jump grows fastcl- 
than that of the thermal layer. 

The heat flux to the solid platc and the co.-- 
responding local Nusselt number art! as follows : 

The quantity Nu/(Rr Pr)’ ’ as a function of< in the 
region before the jump at different Pr’s is illustrated in 

0.8 - 

f. 0.6 - 
u1, 

FIG. ‘4. Dimensionless coordinate at which the thcmmal 
boundary layer comes to the film free surface as 2, function 

of Prandtl numhcr 
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FIG. 10. Local Nusselt number before the jump at Pr = 3 : 
dashed line gives a value pertinent to the initial flow region 

as explained in the text. 

Fig. 10. This quantity is restricted from above by the 
value 0.564 Re”6 which gives Nu/(Re Pr)li3 within 
the initial flow region (see equation (26)). It means 
that a real dependence of Nul(Re Pr)“” on 5 at a 
given Pr has to be approximately composed of a 
segment of that line parallel to the g-axis when 5 < 5” 
(Re, Pr) and a part of the corresponding curve of Fig. 
10 when 5 > cc, to being the coordinate of intersection 
of these curves, as is conventionally shown by the 
dashed line. 

8. CONCLUDING REMARKS 

The main issue of this paper consists in that it 
provides a convenient tool to investigate manifold 
transport processes of interest in thin liquid films 
spreading over horizontal solid plates. The derived 
representations of the velocity profile within diverse 
regions of a film happen to be simple enough to ensure 
their immediate use while studying convective transfer 
problems. This offers an opportunity to get tractable 
conclusions concerning the relevant distribution of 
the local Nusselt or Sherwood number over the plate 
without recourse to elaborated numerical methods, 
as it is conclusively proved by the simple examples 
considered above. 

The same approach can readily be generalized to 
give a su~ciently simple analytical description of film 
flow of another origin. For instance, it is not difficult 
to obtain results pertaining to a film generated by 
an inclined plane or axisymmetric jet falling onto an 
inclined surface when gravity contributes to either 
acceleration or deceleration of the flow. A film orig- 
inated by a plane inclined jet on a horizontal plate has 
been treated in ref. 171. It is also easy to see that the 
method is well applicable to films impinging upon a 
moving surface, which are of great practical sig- 

nificance when cooling rolled metals and in some other 
engineering designs. Moreover, turbulent jets and 
films could be treated in much the same way if one 
cares to incorporate into the analysis an empirical 
dependence of the effective viscosity due to turbu- 
lence, as it was earlier done in refs. [l-3]. 

We con&de with a brief indication concerning the 
specific features of the film cooling of a plate which is 
overheated above the boiling temperature of a 
coolant. Outside the region, in which the coolant 
first hits the plate and a vapour sublayer may occur, 
one might expect the intensive evaporation from the 
film free surface to cause a substantial loss of liquid 
and so to affect the film hydrodynamics. In general, 
such an expectation is correct when Pr < 5. The 
smaller the Prandtl number, the earlier the boiling 
temperature establishes itself at the free surface and 
the greater is an influence of evaporation. That influ- 
ence is capable, in particular, to prevent the formation 
of a hydraulic jump. However, it is not so for liquids 
with Pr > 5 when the thermal boundary layer has no 
time to reach the free surface and the temperature at 
the latter remains equal to an original temperature of 
the liquid coolant. Then the evaporation does not 
generally play any considerable role and film prop- 
erties are practically the same as if there were no heat 
transfer process at all. The significance of the last 
notion is evident because the Prandtl number of the 
most common coolant-water--is certainly larger 
than the indicated critical value of five. 
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